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PREFACE

The knowledge of the physical mechanisms underlying the generation
of noise in turbulent shear flows remains a challenging task despite
over 50 years of intensive research in the field. The interest in this
topic is considerable because turbulent shear flows originating noise
are encountered in many engineering applications, such as flows in
pipes, compressible and incompressible jets, turbulent boundary layers
over rigid or elastic surfaces, wakes generated behind streamlined or
bluff bodies.

Recent developments in terms of our capacity to both numerically
and experimentally analyze the physics of turbulent shear flows have
opened up new possibilities to improve our knowledge about noise gen-
eration and propagation mechanisms. These understandings lead, for
example, to the development of flow/noise manipulation techniques
and address the design of noise suppression devices.

The scope of this volume is to present a state-of-the-art review
of on-going activities in noise prediction, modeling and measurement
and to indicate current research directions. This book is partially
based on class notes provided during the course ‘Noise sources in
turbulent shear flows’, given at CISM on April 2011.

Introductory chapters on fundamentals topics will be followed by
up-to-date reviews of arguments of specific interest for engineering
applications.

The first part of the volume is denoted as ‘Fundamentals’ and
contains two chapters. The first one covers general concepts of aeroa-
coustics, from the basic equations of fluid dynamics to the theoretical
description of self-sustained oscillations in internal flows including
the vortex sound theory. The second chapter illustrates more deeply
the acoustic analogies in account also of the presence of solid surfaces.
The flow features involved in sound generation are also highlighted by
means of suitable dimensional analyses.

In the second part of the volume, denoted as ‘Applications’, par-
ticular emphasis is put into arguments of interest for engineers and
relevant for aircraft design. An important topic included in this part
is jet noise, which is treated from both an experimental and an ana-
lytical viewpoint. A comprehensive review of literature results as well



as a description of present understandings of noise generation and
its predictions is presented.

A second chapter is devoted to describing airfoil broadband noise
and its analytical modeling with emphasis on trailing edge noise and
rotating blades.

The boundary layer noise is treated in another chapter that is
divided into two parts. In the first one noise generation mechanisms
are described. In the second, the problem of the interior noise and
some basic approaches used for its control are presented.

As a fundamental completion of the state-of-the-art knowledge,
a chapter is devoted to clarifying the concept of noise sources, their
theoretical modeling and the techniques used for their identification
in turbulent flows.

All these arguments are treated extensively with the inclusion of
many practical examples and references to engineering applications.

For the purpose of optimizing the convenience of this book, the
chapters are conceived to be self-contained. Readers may concentrate
on the topic they are more interested in, with no need of consulting
other chapters. The disadvantage of this approach lies in the repe-
tition of some basic notions, such as the Lighthill’s analogy or the
Green’s function formalism, which can be found replicated in more
than one chapter. Indeed, scientists may use the same mathematical
tool in a different but efficient way, depending on the purpose of their
analysis.

To my opinion, these reiterations do not represent a shortcoming.
On the contrary I consider this approach to be a quite instructive way
for young researchers to discover and appreciate the amazing strength
and effectiveness of theories, models and mathematical formalisms
that provide the foundations of aeroacoustics.

Roberto Camussi
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Part 1: Fundamentals



Introduction to Aeroacoustics and
Self-Sustained Oscillations of Internal Flows

Avraham Hirschberg

Mesoscopic Transport Phenomena
Eindhoven University of Technology

Chapter in CISM Lecture Series: Noise Sources in Turbulent Shear Flows
18-22 April 2011 Udine, Italy

Abstract After a review of basic equations of fluid dynamics, the
Aeroacoustic analogy of Lighthill is derived. This analogy describes
the sound field generated by a complex flow from the point of view
of a listener immerged in a uniform stagnant fluid. The concept of
monopole, dipole and quadrupole are introduced. The scaling of the
sound power generated by a subsonic free jet is explained, providing
an example of the use of the integral formulation of the analogy.
The influence of the Doppler Effect on the radiation of sound by
a moving source is explained. By considering the noise generated
by a free jet in a bubbly liquid, we illustrate the importance of the
choice of the aeroacoustic variable in an aeroacoustic analogy. This
provides some insight into the usefulness of alternative formulations,
such as the Vortex Sound Theory. The energy corrolary of Howe
based on the Vortex Sound Theory appears to be the most suitable
theory to understand various aspects of self-sustained oscillation due
to the coupling of vortex shedding with acoustic standing waves
in a resonator. This approach is used to analyse the convective
energy losses at an open pipe termination, human whistling, flow
instabilities in diffusers, pulsations in pipe systems with deep closed
side branches and the whistling of corrugated pipes.

1 Introduction

Due to the essential non-linearity of the governing equations it is difficult
to predict accurately fluid flows under conditions at which they do pro-
duce sound. This is typical for high speeds with non-linear inertial terms in
the equation of motion much larger than the viscous terms (high Reynolds
numbers). Direct simulation of such flows is very difficult. When the flow
velocity remains low compared to the speed of sound waves (low Mach num-
bers) the sound production is a minute fraction of the energy in the flow,

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_1, 
© CISM, Udine 2013 



4 A. Hirschberg

making numerical simulation even more difficult. It is not even obvious how
one should define the acoustic field in the presence of flows. Aeroacoustics
does provide such definitions. The acoustic field is defined as an extrap-
olation of an ideal reference flow. The difference between the actual flow
and this reference flow is identified as source of sound. Using Lighthill’s
terminology, we call this an “analogy” [Lighthill (1952-54)].

In free field conditions the sound intensity produced by flows is usually
so small that we can neglect the effect of acoustics on the flow. Further-
more, the listener is usually immerged in a uniform stagnant fluid. In such
cases the convenient reference flow is the linear inviscid perturbation of this
stagnant, uniform fluid. It is convenient to use an integral formulation of
the aero-acoustical analogy. This integral equation is a convolution of the
sound source by the Green function: the response of the reference state
to a localized impulsive source. The advantage of the integral formulation
is that random errors in the source term average out. One therefore often
uses such an integral formulation to extract acoustic information from direct
numerical simulations of the flow which are too rough to directly predict
the acoustic field. Such an approach is used so as to obtain scaling laws
for sound production by turbulent flows when only global information is
available about the flow. When flow dimensions are small compared to the
acoustical wave length (compact flow) we can locally neglect the effect of
wave propagation within the source region. Here the analogy of Lighthill
provides again a procedure which guarantees that we keep the leading order
term where brute force would predict no sound production at all or would
dramatically overestimate it [Crighton et al. (1992)]. In compact flows at
low Mach numbers the flow is most efficiently described in terms of vortex
dynamics, allowing a more detailed study of the sound production by non-
linear convective effects.

Walls have a dramatic effect on the production of sound because it be-
comes much easier compressing the fluid than in free space. In internal flows
acoustic energy can accumulate into standing waves, which correspond to
resonances. Even at low Mach numbers acoustical particle velocities of the
order of magnitude of the main flow velocity can be reached when hydrody-
namic flow instabilities couple with the acoustic standing waves. This rel-
atively high amplitude facilitates numerical simulations considerably. Such
self-sustained oscillations are best described qualitatively in terms of vortex
dynamics.

In a pipe the main flow does not necessarily vanish when travelling
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away from the source region. For these reasons another analogy should
be used, called the Vortex-Sound Theory. Whilst Powell (1964) initially
developed this theory for free space, Howe generalised it for internal flows
[Howe (1975), Howe (1984), Howe (1998), Howe (2002)]. In Howe’s ap-
proach the acoustic field is defined as the unsteady irrotational component
of the flow, which again stresses the fact that vortices are the main sources
of sound in isentropic flows. An integral formulation can also be used in
this case.

When considering self-sustained oscillations, one is interested in condi-
tions at which they appear and the amplitude they reach. While a linear
theory provides information on the conditions under which self-sustained
oscillation appears, the amplitude is determined by essentially non-linear
saturation mechanisms. We will show that when ever the relevant non-linear
mechanism is identified, the order of magnitude of steady self-sustained pul-
sation amplitude can be easily obtained. A balance between the acoustic
power produced by the source and the dissipated power will be used.

A summary of the equations of fluid dynamics is given in (section 2). In
Section 3 we introduce the acoustic field by means of Lighthill’s analogy,
followed by basic concepts of the acoustics of a stagnant uniform fluid, such
as elementary solutions of the wave equation, acoustic energy, the Green
function, multipole expansion, Doppler effect and convective effects due to
a uniform main flow (section 4). We use the analogy of Lighthill to derive
the scaling law for sound production by a subsonic isothermal free jet. The
influence of the difference in speed of sound between the source region and
the listener is discussed by using the example of bubbly liquids (section 5).
We then introduce the acoustics of pipes, derive the low frequency limit
of acoustic properties of a pipe discontinuity and of an open pipe termina-
tion (with and without main flow). In Section 6 we introduce the concepts
of resonators and discuss closed-side branch and Helmholtz resonators. In
section 7 we introduce vortex sound theory and apply it to the analysis of
whistling, from human whistling to whistling of corrugated pipes. Some
aspects introduced here are discussed in depth in the following chapters.

Our discussion is inspired by the book of Dowling and Ffowcs Williams
(1983), which is an excellent introductory course. Basic acoustics is dis-
cussed in the books of Morse and Ingard (1968), Pierce (1990), Kinsler
et al. (1982), Temkin (2001), Blackstock (2000) and Bruneau (2006).
Aeroacoustics is treated in the books of Goldstein (1976), Blake (1986),
Crighton et al. (1992), Howe (1998)and Howe (2002). In this introduction
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we ignore the effect of wall vibration [Junger and Feit (1986), Cremer and
Heckl (1988) and Norton (1989)]. Acoustics of musical instruments is dis-
cussed by Fletcher and Rossing (1998) and Chaigne and Kergomard (2008).
In an earlier course Hirschberg et al. (1995) and a review paper [Fabre et al.
(2012)] we discussed the aeroacoustics of woodwinds. In the Lecture notes
of Rienstra and Hirschberg (1999) provide more details on the mathematical
aspects.

2 Fluid dynamics

2.1 Conservation laws

The conservation of mass for an infinitesimal material element of density
ρ and volume V is given in the continuum approximation by [Batchelor
(1967), Landau and Lifchitz (1987), Kundu (1990)]:

DρV

Dt
= 0 (1)

where the convective time derivative is defined by:

Dρ

Dt
=

∂ρ

∂t
+ (�v · ∇) ρ (2)

in vector notation. In the index notation we have:

Dρ

Dt
=

∂ρ

∂t
+ vi

∂ρ

∂xi
. (3)

Following the convention of Einstein, a summation is assumed in equation
(3) over the repeated index i = 1, 2, 3. The dilation rate of a fluid particle
is given by:

1

V

DV

Dt
= ∇ · �v =

∂vi
∂xi

(4)

Hence, the mass conservation law (1) can be written in the conservation
form:

∂ρ

∂t
+∇ · (ρ�v) = ∂ρ

∂t
+

∂ρvi
∂xi

= 0 . (5)

In integral form this equation becomes:

d

dt

∫
V

ρdV +

∫
S

ρ (�v · �n) dS = 0 (6)

in which, V is a fixed control volume delimited by the surface S with outer
unit normal �n (Figure 1). The second law of Newton applied to an infinites-
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Figure 1. Control volume used to establish the integral conservation laws.

imal material element is:

ρ
D�v

Dt
= −∇ · ��P + �f (7)

where �f is the density of a force field acting on the bulk of the fluid and
��P

is the stress tensor representing the surface interaction between the particle
and its surroundings. Using the definition of the convective derivative (2)
and the mass conservation law (5) we obtain the conservation form of the
momentum equation:

∂ρ�v

∂t
+∇ · (ρ�v�v) = −∇ · ��P + �f (8)

or in index notation:

∂ρvi
∂t

+
∂ρvivj
∂xj

= −∂Pij

∂xj
+ fi (9)

and integral form:

d

dt

∫
V

ρ�vdV +

∫
S

ρ�v (�v · �n) dS = −
∫
S

��P · �ndS +

∫
V

�fdV . (10)

The energy conservation law is, in differential form:

Dρ(e+ v2/2)

Dt
= −∇ · �q −∇ ·

(
��P · �v

)
+ �f · �v +Qw (11)
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where e is the internal energy of the fluid per unit of mass, v = |�v| , �q the
heat flux and Qw the energy production per unit volume.

2.2 Constitutive equations

The conservation laws are complemented by empirical constitutive equa-
tions. For simplicity we assume that the fluid is locally in a state close to
thermodynamic equilibrium, so that we can express the internal energy in
terms of two other state variables:

e = e(ρ, s) (12)

where s is the entropy per unit of mass. Using the thermodynamic equation:

de = Tds− pd

(
1

ρ

)
(13)

we get the equations of state:

p = ρ2
(
∂e

∂ρ

)
s

(14)

and

T =

(
∂e

∂s

)
ρ

. (15)

As we also have p = p(ρ, s) we can write:

dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds . (16)

The speed of sound c is defined by:

c =

√(
∂p

∂ρ

)
s

. (17)

In most applications we will consider an ideal gas for which:

de = cvdT (18)

with cv the specific heat capacity at constant volume. For an ideal gas this
is a function of the temperature only. This further implies:

p = ρRT (19)



Aeroacoustics and Self-Sustained Oscillations of Internal Flows 9

and

c =
√
γRT =

√
γp

ρ
(20)

with R = cp − cv the specific gas constant, γ = cp/cv the Poisson ratio and
cp is the specific heat capacity at constant pressure. By definition:

cv =

(
∂e

∂T

)
ρ

(21)

and

cp =

(
∂i

∂T

)
p

(22)

where the specific enthalpy is defined by:

i = e+
p

ρ
. (23)

Assuming local thermodynamic equilibrium, fluxes are linear functions of
the flow variables. For the heat flux we use the law of Fourier:

�q = −K∇T , (24)

where K is the heat conductivity. The viscous stress tensor is defined by:

τij = pδij − Pij (25)

with δij the Kronecker delta, equal to unity for i = j and otherwise zero.
The viscous stress tensor is described for a so-called Newtonian fluid in
terms of the dynamic viscosity η and the bulk viscosity μ:

τij = 2η
(
Dij − 1

3Dkkδij
)
+ μDkkδij (26)

with

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (27)

2.3 Boundary conditions

The boundary conditions corresponding to the continuum assumption
and the local thermodynamic equilibrium are, for a solid impermeable wall
with velocity �vw and temperature Tw : �v = �vw and T = Tw.
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2.4 Approximations

Sound production by flows occurs at relatively high Reynolds numbers.
When considering wave propagation in air at audio frequencies, we can
neglect friction and heat transfer over distances of the order of the wave
length. Neglecting friction, heat transfer and heat production, the energy
equation (11) becomes:

Ds

Dt
= 0 . (28)

The momentum equation (7) reduces to the Euler equation:

ρ
D�v

Dt
= −∇p+ �f . (29)

In terms of the vorticity �ω = ∇ × �v the convective acceleration can be
written as:

(�v · ∇)�v = ∇
(
v2

2

)
+ �ω × �v . (30)

For homentropic flows ∇s = 0 we have furthermore ∇p/ρ = ∇i, so that the
Euler equation can be written in the form of Crocco:

∂�v

∂t
+∇B = − (�ω × �v) +

�f

ρ
(31)

with the total enthalpy:

B = i+ v2/2 . (32)

For irrotational flow �ω = 0 we can introduce a velocity potential such that:

�v = ∇ϕ (33)

or:

ϕ =

∫
�v · d�x . (34)

In the absence of an external force field, the integration of the Euler equation
yields the unsteady compressible Bernoulli equation:

∂ϕ

∂t
+B = g(t) (35)

in which the function g(t) is determined by the boundary conditions.
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In this isentropic flow approximation dQ = 0, so that it follows from the
first law of thermodynamics:

dQ = de+ pd

(
1

ρ

)
= di− 1

ρ
dp (36)

and

i =

∫
dp

ρ
. (37)

3 Analogy of Lighthill

The key idea of Lighthill’s analogy [Lighthill (1952-54)] is to derive a wave
equation starting from the exact mass conservation equation (5) and the
momentum equation (9):

∂ρ
∂t +

∂ρvi
∂xi

= 0 (5)

and
∂ρvi
∂t +

∂ρvivj
∂xj

= − ∂p
∂xi

+
∂τij
∂xj

+ fi . (9)

Taking the time derivative of (5) and subtracting from it, the divergence of
(9) we obtain the exact equation:

∂2ρ

∂t2
− ∂2ρvivj

∂xi∂xj
=

∂2p

∂x2
i

− ∂2τij
∂xi∂xj

− ∂fi
∂xi

(38)

which is quite meaningless. By adding 1
c20

∂2p
∂t2 on both sides and rearranging

the terms, making use of the fact that we chose c0 to be a constant, we can
write (38) as a wave equation:

1

c20

∂2p

∂t2
− ∂2p

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂t2

(
p

c20
− ρ

)
. (39)

This equation is still exact and still generally meaningless. We could have
chosen c0 to be a millimetre per century or equal to the speed of light. In
order to have a meaningful equation we now assume that we consider sound
production by a flow bounded by a fluid displaying small perturbations from
a uniform stagnant state with speed of sound equal to c0 (Figure 2). We
furthermore define the perturbations in the pressure p′ = p−p0 and density
ρ′ = ρ − ρ0 as deviations from the state (p0, ρ0) of this reference uniform
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Figure 2. Sound sources and listener in the analogy of Lighthill

stagnant reference fluid. As the reference state is constant and uniform we
can write (39) as:

1

c20

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂t2

(
p′

c20
− ρ′

)
. (40)

We will see (section 4) that this equation describes the propagation of acous-
tic waves in the uniform stagnant fluid when the right hand side of the
equation (40) is negligible. In regions where the right hand side is not neg-
ligible, it describes the generation of sound. However, because the equation
of Lighthill is a single exact equation for many unknowns, we will not obtain
any result without approximations. Lighthill has shown that these approxi-
mations can best be introduced into an integral formulation of (40). We will
now consider basic acoustic wave propagation allowing to understand some
elementary aspects of the problem and to derive the integral formulation.

An interesting aspect of the analogy is that the sound source we find
depends on the choice of the acoustic variable. Until now we have chosen
pressure fluctuations p′ to describe the acoustic field. We could also have
followed a similar procedure to obtain a wave equation for the density fluc-
tuations ρ′. Starting from (38) we now subtract from both sides of the
equation the term c20∇2ρ′ to find:

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂x2
i

(
p′ − c20ρ

′) . (41)
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In principle equations (40) and (41) are identical. However the pressure
formulation (40) is most convenient when considering sound production by
combustion processes in which the time-dependent combustion yields time-
dependent fluctuations in the entropy. In contrast, when considering a flow
in spatially non-uniform fluids with large variations in speed of sound the
density formulation (41) will be the most suitable. An example of this is the
sound generation by turbulence in bubbly liquids (section 5.2). In this case
the sound production appears to be dominated by the effect of differences
in the speed of sound.

Equation (41) is often written for convenience in terms of the stress
tensor of Lighthill :

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
i

=
∂2Tij

∂xi∂xj
− ∂fi

∂xi
(42)

where the stress tensor τij is defined by:

Tij = ρvivj − τij +
(
p′ − c20ρ

′) δij . (43)
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4 Acoustics of a uniform stagnant fluid

4.1 Wave equation

Looking at small perturbations (p′, ρ′, �v′) of a uniform stagnant state
(p0, ρ0) and neglecting friction and heat transfer, we find, for linear pertur-
bations:

∂ρ′

∂t
+ ρ0∇ · �v′ = 0 , (44)

ρ0
∂�v′

∂t
+∇p′ = �f (45)

and
∂s′

∂t
=

Qw

ρ0T0
. (46)

The corresponding linearized equation of state is:

p′ = c20ρ
′ +

(
∂p

∂s

)
ρ

s′ . (47)

Taking the time derivative of (44), subtracting the divergence of (45) and
using (46) and (47) in order to eliminate ρ′ and s′, we obtain the wave
equation for pressure perturbations:

1

c20

∂2p′

∂t2
−∇2p′ =

1

T0ρ0c20

(
∂p

∂s

)
ρ

∂Qw

∂t
−∇ · �f . (48)

As can be seen from this equation, the unsteady heat production is a source
of sound, which is due to the dilatation of the fluid. This is in line with
our common experience that turbulent flames are noisy. Also an unsteady
non-uniform force field appears to be a source of sound. This is the sound
source when considering the whistling of a cylinder placed with its axis
normal to a uniform flow. Due to hydrodynamic instability, the wave be-
hind the cylinder breaks down into a vortex street of alternating rotation
direction. This periodic vortex shedding induces an unsteady force of the
flow on the cylinder. The reaction force from the cylinder on the fluid is the
source of sound. The so-called Aelonian tone will be discussed in section 7.2.

The next sections will focus on wave propagation and hence assume that
Qw = 0 and �f = 0. We therefore consider solutions of the homogeneous
wave equation of d’Alembert

1

c20

∂2p′

∂t2
−∇2p′ = 0 . (49)

As the flow is isentropic the equation of state (16) reduces to p′ = c20ρ
′.
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4.2 Elementary solutions

The homogeneous scalar wave equation (49) satisfies the plane wave
solution:

p′ = F (�n · �x− c0t) (50)

with �n as the unit vector in the direction of propagation. This can easily be
verified for �n = (1, 0, 0), in which case the wave equation (45) reduces to:

1

c20

∂2p′

∂t2
− ∂2p′

∂x2
= 0 . (51)

Using the chain rule we can verify that p′ = F (x − c0t) is a solution. The
function F (x) is determined by initial and boundary conditions. Also p′ =
G(x + c0t) is a solution, representing a wave propagating in the opposite
direction �n = (−1, 0, 0). For harmonic waves with a frequency f we can
write this solution with the complex notation as:

p′ = A exp

[
iω

(
t− �n · �x

c0

)]
= A exp

[
i
(
ωt− �k · �x

)]
(52)

where A is the complex amplitude, �k = (ω/c0)�n the wave vector and ω =
2πf . Substitution of the plane wave solution into the momentum equation
(45)with �f = 0 yields:

�u′ =
p′

ρ0c0
�n . (53)

Another elementary solution is obtained by considering spherical symmetric
waves emanating from a point at source �y. The pressure field is then only
a function of time and of distance r = |�x− �y| between the source position �y
and the observer’s position �x. The mass conservation law and momentum
equation reduce to:

∂ρ′

∂t
+

ρ0
r2

∂

∂r

(
r2

∂v′r
∂r

)
= 0 (54)

and

ρ0
∂v′r
∂t

+
∂p′

∂r
= 0 (55)

where v′r is the fluid velocity in the radial direction. Eliminating the velocity
and the density ρ′ = p′/c20 yields:

1

c20

∂2rp′

∂t2
− ∂2rp′

∂r2
= 0 (56)
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which is satisfied by the one-dimensional d’Alembert solution for the prod-
uct of pressure p′ and distance r:

p′ =
1

r
F (r − c0t) . (57)

By using this equation, we actually assume “free field” conditions. We
assume that there are only outgoing waves and no incoming (or reflected)
waves converging towards the source. For harmonic waves equation (57)
becomes in complex notation:

p′ =
A

r
exp [i(ωt− kr)] (58)

with k = ω/c0. The corresponding radial velocity is found by substitution
in the momentum equation:

v′r =
p′

ρ0c0

[
1 +

1

ikr

]
. (59)

We observe that for large distances compared to the wave length kr >> 1,
the solution can locally be approximated by a plane wave with: p′ = ρ0c0v

′
r.

In this so-called “far field” approximation we have:

∂p′

∂r
≈ − 1

c0

∂p′

∂t
. (60)

In the opposite limit of near field kr << 1 the velocity varies quadrati-
cally with the distance r, which is typical for the incompressible flow from
a point volume source. Whenever characteristic flow dimensions are small
compared to the wave length we can neglect wave propagation. Such a flow
is called a “compact” flow.

Using these results (58-59) we can now consider the sound radiated by
a pulsating sphere of radius

a = a0 + â exp(iωt) (61)

where â/a0 << 1 and ωâ/c0 << 1. Substituting (61) into (59) and using
(58) we find:

iωâ =
A exp(−ika0)

ρ0c0a0

(
1 +

1

ika0

)
(62)

and

p′ = − ρ0ω
2a0â

(1 + (ka0)2)
(1− ika0)

(a0
r

)
exp [i(ωt− k(r − a0))] . (63)
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This result shows that in the limit ka0 << 1 for a given volume flux ampli-
tude 4πa20ωâ, the amplitude of the radiated sound wave increases linearly
with the frequency. At low frequency the pulsating sphere is compact and
is a very inefficient source of sound. In the opposite limit ka0 >> 1 the
radiated amplitude is independent of the frequency.

4.3 Acoustic energy

For further reference we now consider the acoustic energy. Following
the original approach of Kirchhoff, we start from the linearized mass and
momentum equations:

1

c20

∂p′

∂t
+ ρ0∇ · �v′ = 1

T0ρ0c20

(
∂p

∂s

)
ρ

Qw (64)

and

ρ0
∂�v′

∂t
+∇p′ = �f . (65)

Then we multiply the mass conservation law by p′/ρ0 and add the in-product
of the momentum equation with the velocity �v′, to find:

∂E

∂t
+∇ · �I =

1

(ρ0c0)2T0

(
∂p

∂s

)
ρ

p′Qw + �v′ · �f (66)

with the acoustic energy density E defined by :

E =
1

2
ρ0|�v′|2 + (p′)2

2ρ0c20
(67)

and the intensity I defined by:

�I = p′�v′ . (68)

It should be noted that this derivation assumes that we did not neglect any
relevant quadratic terms when using the linear approximation for the mass
and momentum equation. This approach appears to be valid only for the
case considered, i.e. of a uniform stagnant reference state [Morfey (1971),
Landau and Lifchitz (1987), Pierce (1990), Myers (1991)].

Equation (66) clearly shows generating acoustic energy requires that a
volume source should be placed at a position with a large acoustic pressure.
A force needs an acoustic velocity to generate acoustic energy.
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Considering a compact pulsating sphere near a rigid plane wave kh << 1
(Figure 3), we observe that due to reflection at the wall the amplitude of
waves reaching an observer in the far field is roughly double the amplitude
we would find in free space. Hence, the intensity is four times larger than
in free space. However, the source only radiates into a half space, so that
the time averaged power < P > generated by the source is doubled. This
result can also be understood as a result of the doubling of the pressure
fluctuations surrounding the source, due to reflection at the wall, which,
following our energy corollary doubles the generated power. This implies

Figure 3. Influence of a rigid plane wall on the radiation of a compact
sphere placed near the wall: p′ = p′d + p′r ≈ 2p′d ⇒< P >= 1

24πr
2 < Ir >=

2× 4πr2 <
(p′

d)
2

ρ0c0
>

that the radiated power is doubled compared to free field conditions. This
example stresses the fact that the sound power does not only depend on the
source but also on the surroundings of the source.
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4.4 Free space Green’s function and integral formulation

Using the superposition principle we obtain an integral formulation of
the wave equation for free space conditions. We first consider the sound
generated by a pulse from a point source. This implies a localization in
time and space, obtained by using the delta function. The delta function
δ(t) is a generalized function defined by [Chrighton (1992)]:∫ ∞

−∞
δ(t)f(t)dt = f(0) . (69)

For any well behaving function f(t) and:∫ ∞

−∞
δ(t)dt = 1 . (70)

The delta function has no meaning outside an integral. The free-field Green
function G0(�x, t|�y, τ) is the solution of the wave equation:

1

c20

∂2G0

∂t2
−∇2G0 = δ(t− τ)δ(�x− �y) (71)

where δ(�x − �y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3), for free-field boundary
conditions and for the initial conditions:

G0(�x, t|�y, τ) = 0, t ≤ τ (72)

and
∂

∂t
G0(�x, t|�y, τ) = 0, t ≤ τ (73)

corresponding to the causality condition that a wave cannot reach an ob-
server before it has been emitted. In order to determine G0(�x, t|�y, τ) we use
the Fourier transform Ĝ0 defined by:

G0(�x, t|�y, τ) =
∫ ∞

−∞
Ĝ0(ω, �x|�y) exp(iωt)dω (74)

and

Ĝ0(ω, �x|�y) = 1

2π

∫ ∞

−∞
G0(�x, t|�y, τ) exp(−iωt)dt . (75)

As we consider the field generated by a point source in free-field conditions
we know that the Fourier transform of the Green function is given by:

Ĝ0(ω, �x|�y) = A

r
exp(−ikr) (76)



20 A. Hirschberg

where A is an amplitude which will be determined by using the properties
of the delta function. We take the Fourier transform of the wave equation
(71). Using the property (69) of the delta function:

1
2π

∫∞
−∞ δ(t− τ) exp(−iωt)dt =

= 1
2π

∫∞−τ

−∞−τ
δ(t− τ) exp(−iω(t− τ)− iωτ)d(t− τ) = exp(−iωτ)

2π

(77)

we find:

−(k2 +∇2)Ĝ0 =
exp(−iωτ)

2π
. (78)

We integrate this equation over a spherical volume V of radius R enclosing
the source:

−
∫
V

(k2 +∇2)Ĝ0dV =
exp(−iωτ)

2π
. (79)

By taking the limit of a compact control volume kR << 1 and using the
Gaussian Theorem we find:

−
∫
s

∂Ĝ0

∂r
dS = −4πR2 ∂Ĝ0

∂r

∣∣∣∣∣
r=R

= 4πR2 A

R2
=

exp(−iωτ)

2π
(80)

which yields the amplitude A. Substituting A in (76) and transforming back
to the time domain yields:

G0(�x, t|�y, τ) = δ(τ − te)

4πr
(81)

where the emission (retarded) time te is defined by:

te = t− r

c0
. (82)

Because Green’s function in free-space only depends on the distance r and
time difference (t− τ), rather than on the source and observer’s coordinates
(�x, t) and (�y, τ) separately, it satisfies the important symmetry properties:

G0(�x, t|�y, τ) = G0(�y,−τ |�x,−t) (83)

and
∂G0

∂t
= −∂G0

∂τ
(84)

and
∂G0

∂xi
= −∂G0

∂yi
. (85)
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Equation (83) is the so-called reciprocity relation, which is also valid for
Green’s functions in the presence of walls.

We can now use the Green function to build the free-field solution of the
non-homogeneous wave equation:

1

c20

∂2p′

∂t2
−∇2p′ = q(�x, t) (86)

by using the superposition principle:

p′(�x, t) =
∫ t

−∞

∫
V

q(�y, τ)G0(�x, t|�y, τ)dVydτ =

∫
V

q(�y, te)

4πr
dVy (87)

where dVy = dy1dy2dy3.

Substitution of (87) into (86) and using the definition (71) of Green’s
function we can verify the validity of this solution.

In the presence of walls, we can still use the same free-field Green func-
tion. However, now the solution of the wave equation will include surface
integrals representing the effect of reflections of waves at the walls. Using
Green’s theorem we have:

p′(�x, t) =
∫ t

−∞
∫
V
q(�y, τ)G0(�x, t|�y, τ)dVydτ

− ∫ t

−∞
∫
S
[p′∇yG0 −G0∇yp

′] · �ndSydτ .
(88)

This integral formulation, in combination with Lighthill’s analogy, yields
the integral formulation of Curle (1955). The control volume is chosen
such that it encloses the observation point �x. Note that in the literature
the sign of the unit normal �n is often chosen to be the opposite of the sign
chosen here [Goldstein (1976), Dowling and Ffowcs Williams (1983)].

An alternative approach is the use of a so-called tailored Green function
[Dowling and Ffowcs Williams (1983)]. This is a Green function defined
by the wave equation (71) and the same (locally reacting linear) boundary
conditions as the acoustic field under consideration. In that case the surface
integrals of (88) vanish. An example of such a Green function for the trailing
edge of a plate will be discussed in later chapters, Part 2.

4.5 Monopole, dipole and quadrupole

We consider radiation of a spatially limited source-region under free field
conditions. Whenever the source region (q(�x, t) �= 0) is compact, we can ne-
glect variations in the retarded time te in the integral of equation (87).
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Choosing the origin within the source region we get at distances large com-
pared to the source region:

r = |�x− �y| ≈ |�x| (89)

and

te ≈ t− |�x|
c0

(90)

so that we have:

p′(�x, t) ≈ 1

4π|�x|
∫
V

q

(
�y, t− |�x|

c0

)
dVy . (91)

We call the integral
∫
V
q
(
�y, t− |�x|

c0

)
dVy the monopole strength of the source

region. Whenever the source is the divergence of a force field q(�x, t) = −∇· �f
integral (91) taken over a volume including the source region will vanish

because the surface integral of the flux of the force field
∫
S
�f · �ndSy = 0

vanishes because �f = 0 on the surface. The surface, including the control
volume, is outside the source region so that the force is either uniform or
zero. By partial integration and using the symmetry property (83) we can
write the formal solution of the wave equation as:

p′(�x, t) = − ∫ t

−∞
∫
V
(∇y · �f(�y, τ))G0(�x, t|�y, τ)dVydτ =

= − ∫ t

−∞
∫
V
�f(�y, τ)∇xG0(�x, t|�y, τ)dVydτ .

(92)

As the integration over the source coordinates �y does not interfere with the
derivation by observer’s coordinates �x we have:

p′(�x, t) = −∇x ·
∫ t

−∞

∫
V

�f(�y, τ)G0(�x, t|�y, τ)dVydτ . (93)

For a compact source (k|�y| << 1 and distances large compared to the
dimension of the source region (|�x| >> |�y|), we have a dipole field:

p′(�x, t) ≈ −∇x ·
(

1

4π|�x|
∫
V

�f

(
�y, t− |�x|

c0

)
dVy

)
(94)

where
(∫

V
�f
(
�y, t− |�x|

c0

)
dVy

)
is the dipole strength.

An alternative way to find this expression is to consider the solution φi of
the wave equation:

1

c2o

∂2φi

∂t2
−∇2φi = −fi (95)
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following (87) this is simply:

φi(�x, t) = −
∫ t

−∞

∫
V

fi(�y, τ)G0(�x, t|�y, τ)dVydτ . (96)

Obviously taking the divergence of equation 95 we also have:

1

c20

∂2(∂φi/∂xi)

∂t2
−∇2(∂φi/∂xi) = − ∂fi

∂xi
(97)

which leads to equation (93) because p′(�x, t) = −∇ · �φ.

While a monopole can be represented as a pulsating compact sphere, a
dipole field is generated by a compact translating sphere. In a similar way

we can obtain for the sound source
∂2ρvivj
∂xi∂xj

found in the analogy of Lighthill:

p′(�x, t) =
∂2

∂xi∂xj

∫ t

−∞

∫
V

ρvivjG0(�x, t|�y, t)dVydτ . (98)

In a compact source region this is a so-called quadrupole field.

An alternative approach to the multipole expansion of the source [Gold-
stein (1976)] is to use a Taylor series expansion of the free space Green
function around �y = 0 in the general solution (87):

p′(�x, t) =
∫ t

−∞
∫
V
q(�y, τ)

[
G0(�x, t 0, τ) +

(
∂G0

∂yi

)
�y=0

yi+

+ 1
2

(
∂2G0

∂yi∂yj

)
�y=0

yiyj + ...

]
dVydτ .

(99)

which, using the symmetry properties (85) of the Green’s function and the
far field approximation, yields:

p′(�x, t) ≈ 1
4π|�x|

∫
V
q
(
�y, t− |�x|

c0

)
dVy +

xi∂
4π|�x|2c0∂t

∫
V
yiq(�y, t− |�x|

c0
)dVy+

+
xixj

4π|�x|3
∂2

c20∂t
2

∫
V

1
2yiyjq

(
�y, t− |�x|

c0

)
dVy + ...

(100)
An intuitive interpretation of monopole, diopole and quadrupole on surface
water waves is provided in Figure 4. Due to the oscillating momentum in
the region between the two monopoles forming a dipole it is obvious that
a dipole cannot exist without any force acting on the fluid. This force is
needed to change the momentum. Thus, unsteady force induces a dipole
radiation and a dipole radiation cannot exist without a force acting on the
fluid.
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Figure 4. Intuitive interpretation of monopole, diopole and quadrupole on
surface water waves. We provide a qualitative interpretation of physical
realisations of monopole, dipole and quadrupole. Mass exchange between
two monopoles with opposite phase implies an oscillating momentum. This
is impossible without external force.

4.6 Analogy of Curle

The analogy of Curle (1955) is the integral formulation (88) applied to
Lighthill’s analogy (42) in terms of density fluctuations:

p′(�x, t) = c20ρ
′(�x, t) =

∫ t

−∞
∫
V

(
∂2Tij

∂yi∂yj
− ∂fi

∂yi

)
G0(�x, t|�y, τ)dVydτ

−c20
∫ t

−∞
∫
S

[
ρ′ ∂G0

∂yi
−G0

∂ρ′

∂yi

]
nidSydτ .

(101)

The observer is placed within the control volume V over which we carry
out the integration. This equation is based on the assumption that at the
listener’s position p′ = c20ρ

′. We will further ignore the contribution from

the external force field (�f = 0). By means of partial integration we move
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the space derivatives from the source terms towards the Green function:

p′(�x, t) = c20p
′ =

∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ+

+
∫ t

−∞
∫
S

[
G0

∂Tij

∂yi
nj − Tij

∂G0

∂yj
ni

]
dSydτ−

−c20
∫ t

−∞
∫
S

[
ρ′ ∂G0

∂yi
−G0

∂ρ′

∂yi

]
nidSydτ .

(102)

Using the definition of the viscous stress tensor (26) and the momentum
equation (9) we can write (102) in the form:

p′(�x, t) = c20p
′ =

∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ +

∫∞
−∞

∫
S
G0

∂ρvi
∂t nidSydτ

− ∫ t

−∞
∫
S
(Pij + ρvivj)

∂G0

∂yj
nidSydτ +

∫ t

−∞
∫
S

(
p′ − c20ρ

′) ∂G0

∂yi
nidSydτ .

(103)
Furthermore we neglect entropy fluctuations on the surface S.

By means of partial integration we move the time derivative in the sec-
ond integral from the momentum flux to the Green’s function. Using the
symmetry relations of the free field derivative with respect to space (85)
and time derivatives (84), we find in the far field approximation (60):

p′(�x, t) = − 1
4π

∂
∂t

∫
S

[
ρvi

r

]
τ=te

nidSy−
− xj

4π|�x|c0
∂
∂t

∫
S

[
Pij+ρvivj

r

]
τ=te

nidSy+

+
xixj

4π|�x|2c20
∂2

∂t2

∫
V

[
Tij

r

]
τ=t

dVy .

(104)

In (104) we recognize the monopole sound production due to the volume flux
leaving the surface (first integral), the dipole field generated by the force
acting on the surfaces and the quadrupole field generated by fluctuations of
the Reynolds stress tensor in the volume.

4.7 Doppler Effect

In Curle’s formulation (section 4.6) we restricted ourselves to fixed con-
trol volumes. When considering sound produced by moving objects such as
fan blades, it is more convenient to use a moving control volume. Ffowcs
Williams and Hawkings (1969b) use generalized functions to take into ac-
count the motion of the sources, the result being a generalization of Curle’s
equation in which Doppler factors appear. In a further step Ffowcs Williams
and Hawking [Goldstein (1976), Dowling and Ffowcs Williams (1983),
Crighton et al. (1992)] introduce the boundaries of the control volume in
the equation of motion, see next chapter. We now focus on the derivation
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of the Doppler effect for point sources.
A moving point source is described by:

q(�x, t) = Q(t)δ(�x− �xs(t)) (105)

where �xs(t) is the position of the source. For free-field conditions we have:

p′(�x, t) =
∫ t

−∞

∫
V

Q(τ)δ(�y − �xs(τ))δ(τ − te)

4πr
dVydτ (106)

where te = t− r
c0

and r = |�x−�y|. Using the properties of the delta function
we get after spatial integration:

p′(�x, t) =
∫ t

−∞

Q(τ)δ
(
t− τ − |�x−�xs(τ)|

c0

)
4π|�x− �xs(τ)| dτ (107)

This is an integral of the type:∫ ∞

−∞
F (τ)δ(H(τ))dτ = Σi

F (ti)

|dHdτ |τ=ti

(108)

with H(ti) = 0. In the present case we have:

H(τ) = t− τ
|�x− �xs(τ)|

c0
(109)

so that:
dH

dτ
= −1 +

�x− �xs

c0|�x− �xs(τ)| ·
d�xs

dτ
= −1 +Mr (110)

where Mr is the ratio of the source velocity component in the direction of
the observer and the speed of sound. The sound field is given by:

p′(�x, t) =
Q(te)

4π|1−Mr||�x− �xs(te)| (111)

where the emission time is the root of:

c0(t− te) = |�x− �xs(te)| . (112)

For subsonic velocities there is only one root (τ = te) of H(τ) = 0. For a
harmonically oscillating sound source with constant frequency ω, the fre-
quency of the signal reaching the observer is:

dωte
dt

=
ω

1−Mr(te)
(113)
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because dte
dt = 1

1−Mr(te)
.

A further discussion of the Doppler Effect is provided in the next chap-
ter, where it is shown that for supersonic Mach numbers, the sound source
will have a strong radiation for directions such that Mr = 1. An example
of such a radiation occurs when elastic bending waves in a plate propa-
gate supersonically with respect to the surrounding fluid. As the velocity
of propagation of bending waves increases with the frequency this occurs
typically above a critical frequency fc, which is called the coincidence fre-
quency. This explains why we hear a high pitch when we hit a glass window.

From equation (111) we observe that in addition to the change in fre-
quency we have an effect of the source motion on the amplitude reaching
the observer. This effect can be understood as a result of the change in
ratio of source size to acoustic wave length. From equation (63) we know
that with increasing Helmholtz numbers the radiate sound amplitude of a
compact object increases. In the direction of motion of the source, the emit-
ted acoustic wave length is shorter by a factor 1 − Mr, with an increased
effective Helmholtz number as a result. In figure 5 we provide an intuitive
interpretation of the Doppler shift in frequency.
Furthermore we note that for a moving object of volume V the sound

source is q(�x, t) = ρ0
d2V
dt2 δ(�x− �xs(t)). Hence we have:

p′(�x, t) = ρ0
∂2

∂t2

(
V (te)

4π|1−Mr||�x− �xs(te)|
)

. (114)

It shows that due to the time dependency of the retarded time ∂te/∂t an
object of constant volume will radiate sound if its velocity varies. This is
the so called thickness noise p′th, which is very important in aircraft fans. In
the far field approximation for a rigid of volume V body moving at subsonic
speed, we have:

p′th(�x, t) ≈ ρ0V

⎛⎝ |1−Mr|d2Mr

dt2e
+ 3dMr

dte

4π|1−Mr|3(1−Mr)2

⎞⎠ 1

|�x− �xs(te)| . (115)

Another example is the sound radiated by a moving point force:

�f = �F (t)δ(�x− �xs(t)) (116)

which is given by:

p′(�x, t) = −∇ ·
(

�F (te)

4π|�x− �xs(te)||1−Mr|

)
. (117)
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Figure 5. Intuitive interpretation of Doppler effect as a change in wave
length λ = c0−U

f of radiated wave due to the movement of the source with
a velocity U in the direction of the listener. The wave-length is reduced in
the direction of the movement. This implies a reduction of the compactness
of the source and leads to an increased radiation power.

In the far-field approximation we have:

p′(�x, t) = − 1

1−Mr

(�x− �xs(te))

|(�x− �xs(te))| ·
∂

∂te

(
�F (te)

4π|�x− �xs(te)||1−Mr(te)|

)
.

(118)

4.8 Influence of speed of sound gradient and of convective effects

Whenever a source of sound is compact we can separate the sound gen-
eration from the wave propagation. Even with this simplification the wave
propagation remains extremely complex.

In the presence of flow and gradients in the speed of sound, acoustic
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waves display complex propagation behaviour [Dowling 1983, Pierce 1990,
Rienstra 1999]. An example of this is the sound propagation in the at-
mosphere. As a result of the non-uniformity of the temperature in the
atmosphere waves are deflected from the straight path assumed in the ele-
mentary solutions for uniform stagnant fluid. An example being that a gun
shot or thunder heard at large distances can be repeated multiple times,
which yields a roll sound. This is due to the fact that sound can reach our
ears along multiple paths.

We now consider a very basic problem of a plane wave that is reflected
at the interface (shear layer) between two uniform media a and b with each

having uniform flow speeds respectively �Ua = (Ua, 0, 0) and �Ub = (Ub, 0, 0)
and speeds of sound ca and cb respectively.

In presence of a uniform flow the plane wave solution (52) becomes:

p′(�x, t) = A exp

(
iω

(
t− �x · �n

c0 + �n · �U

))
= A exp

(
i
(
ωt− �k · �x

))
(119)

with �n = (cos θ, sin θ, 0) and �k = ω�n/(c0 + �n · �U).

We assume an incident wave with amplitude I and wave number �kI =
ω�n

ca+�nI ·�U a
in region a. This induces a reflected wave with amplitude R and

wave number �kR = ω�nR

ca+�nR·�Ua
and a transmitted wave with amplitude T and

wave number �kT = ω�nT

cb+�nT ·�Ub
(Figure 6).

At the interface x2 = 0 we have continuity of pressure so that for x2 = 0
we have:

I exp
(
−ω x1 cos θI

ca+Ua cos θI

)
+R exp

(
−iω x1 cos θR

ca+Ua cos θR

)
=

= T exp
(
−iω x1 cos θT

cb+Ub cos θT

)
.

(120)

As this equation should hold for any value of the coordinate x1 (along the
shear layer) the exponents should be identical:(

cos θI
ca + Ua cos θI

)
=

(
cos θR

ca + Ua cos θR

)
=

(
cos θT

cb + Ub cos θT

)
. (121)

The first equality of (121) implies that cos θ1 = cos θR, so that the reflection
angle is equal to the incidence angle θR = −θI .
The second equality of (121) yields the modified Snelius law:

ca
cos θI

+ Ua =
cb

cos θT
+ Ub (122)
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Figure 6. Reflection and refraction of a plane wave at a flat shear layer
x2 = 0 separating two uniform flows.

or:

cos θT =
cb cos θI

ca + (Ua − Ub) cos θI)
. (123)

The maximum transmission angle is found for grazing incidence cos θI = 1:
In the particular case of ca = cb and Ub = 0 we find:

(θT )max = arcos

(
1

1 + (Ua/ca)

)
(124)

In high speed jets one does indeed observe a cone of silence along the axis
of the jet, because the acoustic waves emitted along the main flow direction
are bent away from the flow direction by the velocity gradient in the shear
layers [Morfey (1978)].

The amplitude of the transmitted and reflected waves is calculated from
the continuity of pressure at the interface I +R = T complemented by the
continuity of particle displacement at the interface.



Aeroacoustics and Self-Sustained Oscillations of Internal Flows 31

5 Turbulence noise at low Mach numbers

5.1 Isothermal free jet

Considering the sound production of a turbulent free jet. This is the
flow with a velocity U0 at the outlet of a pipe of diameter D. Turbulence
is an unsteady chaotic fluid motion which appears when viscous forces are
small compared to non-linear convective forces. This corresponds to high
Reynolds numbers ReD = U0D/ν. We limit ourselves to a low Mach num-
ber flow M = U0/c0 � 1 of an air jet surrounded by air with the same
temperature as its surroundings. The prediction of the scaling rule between
the power of this sound source and the Mach number was a major suc-
cess of the theory of Lighthill (1952-54). As stressed by Powell (1990),
the scaling law was predicted before it was corroborated by experiments.
The steps taken by Lighthill were, however, quite intuitive and justification
of some of these steps came only long after the original publication [Mor-
fey (1973),(1976),(1978), Obermeier (1975)]. We now follow the Lighthill
prodecure [1954].

Firstly Lighthill assumes that there are no external forces working on the
flow and that the effect of walls can be neglected. In free field conditions
equation (99) simplifies to:

p′(�x, t) = c20ρ
′ ∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ =

= ∂2

∂xi∂xj

∫ t

−∞
∫
Tij

δ
(
t−τ− r

c0

)

4πr dVydτ .
(125)

This implies that the solution we are seeking for is, at most, a quadrupole
field. In fact, we have imposed this by assuming that there are no external
forces acting on the fluid and the potential monopole sources were neglected.
Please note that in the analogy of Lighthill, ρ′ is used as aeroacoustical vari-
able. In the next section we will discuss why this choice can be important.
Carrying the time integration and using the far field approximation we find:

p′(�x, t) = c20ρ
′ =

xixj

|�x|2c20
∂2

∂t2

∫
V

Tij(�y, t− r
c0
)

4πr
dVy . (126)

The sound appears to be produced mainly by large coherent vortex struc-
tures with a length scale of the order of the pipe diameter D. For such scales
the Reynolds number is large. We therefore expect the Reynolds stress ten-
sor ρvivj to be much larger than the viscous stress tensor τij [Morfey (1976)].
Furthermore, at low Mach numbers variations in temperature and density
are negligible [Morfey (1973), Morfey et al. (1978)], which implies that we
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Figure 7. Overall acoustic sound power level (OAPWL) of the sound
radiation from an isothermal free jet as a function of the jet Mach
number: comparison of theory with experimental results [Fisher et al.
(1973),Viswanathan (2009)].

can use the approximation proposed by Lighthill (1952-54):

Tij ≈ ρ0vivj . (127)

For a circular jet cross section the dominant frequency corresponds to a
Strouhal number of unity. Hence the dominating frequency is U0/D and the
corresponding acoustic wavelength is D/M = Dc0/U0. The sound source
has a volume V of the order of D3. At low Mach numbers the sound source
is small compared to the wave length. This implies that we can neglect
variations of the retarded time in the integral (126): r = | �x− �y| ≈ |�x|.
Summarizing we use the scaling rules:

∂

∂t
∼ U0

D
(128)

Tij ∼ ρ0U
2
0 (129)

V ∼ D3 . (130)
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Substitution in (126) yields:

p′ ∼ ρ0U
4
0

c20

(
D

r

)
. (131)

In terms of sound source power < P >= 4πr2 (p′)2

ρ0c0
we have:

< P >
1
2ρ0U

3
0
πD2

4

∼ 32M5 (132)

where we assumed an isotropic radiation pattern. This famous global scaling
rule of Lighthill (1952-54) appears to be valid up to Mach numbers of order
unity. At these high Mach numbers the radiation pattern has a high forward
directivity due to the Doppler effect and, due to refraction of sound by the
shear layers, it displays a cone of silence around the axis. The fact that the
theory remains valid up to relatively high Mach numbers can be partially
explained by the fact that the convection velocity Uc of the vortices in the
jet is only a fraction of the main flow velocity [Crighton et al. (1992)]. Typ-
ically we have Uc/U0 ≈ 0.3. Recent discussions on jet noise are Morris and
Farassat (2002) and Viswanathan (2009) as well as the discussion in Part 2.

Obviously, by increasing the Mach number, the scaling law of Lighthill
fails simply because the radiated power would become larger than the avail-

able jet power 1
2ρU

3
0
πD2

4 . Also the sound production mechanism changes
drastically. The sound radiation from supersonic jets aboveM = 3 is largely
due to hydrodynamic shear waves which display highly directional radiation
patterns. Entropy effects due to temperature differences in the flow also be-
come very important. In a supersonic flow the temperature typically varies
from the stagnation temperature Tt to the isentropic expansion temperature
T = Tt/(1 + (γ − 1)M2/2). Starting from room temperature Tt ≈ 300K in
the reservoir, M = 3 implies a main flow temperature T ≈ 100K. Obvi-
ously, such a flow is not isothermal and we can use many different definitions
of the temperature or Mach numbers to characterize the flow [Viswanathan
(2009)].

Finally, most supersonic jet are either over- or underexpanded, and there-
fore display standing shock structures, which interact with vortices (turbu-
lence) that give strong sound radiation. In some cases, this leads to spec-
tacular self-sustained oscillation (jet screetch).

Note that approximation (128) is based on the fact that in a circular
jet the characteristic Strouhal number for the sound production is of or-
der unity SrD = Df/U = 0(1). In a planar jet of thickness H we find
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SrH = Hf/U = 0(10−1), which again stresses that the assumptions are not
trivial [Bjørnø et al. (1984)].

Turbulence noise is essential because, when all other sound sources have
been suppressed, this will always remain as the minimum remaining noise
production which we can achieve. Lighthill’s scaling law indicates that the
most efficient way to reduce this noise is to reduce the flow velocity. The
result derived for free-field conditions remains valid for confined flow. In the
absence of resonances, one finds at low frequencies in a pipe p′ ∼ ρ0U

3
0 /c0

and < P >∼ M6.

It is important to stress again that the analogy of Lighthill does not
impose the quadrupole character of the source. Because we neglected the
monopoles (no heat sources and negligible variation in density) and the
dipoles (no external force acting on the “free” jet), the source has at most,
a quadrupole character. Based on the integral formulation (126) the proce-
dure imposes this assumed quadrupole character on the solution. So even
if the applied model predicting the stress tensor Tij does involve density
fluctuations and external forces, the formulation ensures that these contri-
butions are ignored. This explains the success of such analogies [Schram and
Hirschberg (2003)]. They filter out spurious sound sources due to errors in
the estimation of the stress tensor Tij .

5.2 Bubbly liquids

In the previous sections we used the analogy of Lighthill (1952-54) to
obtain a scaling law for sound production by subsonic isothermal free jets.
One of the choices in this derivation is to express the analogy in terms
of fluctuations of density ρ′ (equation 40). As an alternative, we could
have also used the fluctuations of pressure p′ (equation 39). In principle
both formulations are equivalent as long as no approximations are involved.
However, an analogy is only meaningful if we do use approximations. De-
pending on the choice of the aero-acoustic variable some approximations
will appear naturally. For example using the pressure formulation, the en-
tropy noise source term has the form ∂2(p′/c20−ρ′)/∂t2. This is a monopole
sound source, to be understood as the time dependent volume expansion
due to unsteady combustion. A more detailed analysis of thermal effects is
provided by Morfey et al. (1978) and Dowling [in, Crighton et al. (1992)]).
Using the density formulation, the entropy sound source term is a spatial
derivative ∂2(p′ − c20ρ

′)/∂x2
i . We will now explain the physical meaning of

this apparently obscure sound source term. For this we consider the sound
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produced by a turbulent free jet in a bubbly liquid, as observed by a lis-
tener immerged in the pure liquid. In such a case the speed of sound c
in the source region is much lower than the speed of sound c0 of the fluid
surrounding the listener.

β
0 1

c

liquidc

gasc

liquid

gas

gascc
ρ

ρ
2min ≈

0.5

Figure 8. Low frequency limit of the speed of sound in a bubbly liquid as
a function of the gas volume fraction [Crighton et al. (1992)].

Considering the low frequency limit of the behaviour of a mixture of gas
bubbles and a liquid (Figure 8). We find that low frequency implies that
gas density ρg and fluid density ρl are both uniform so that the mixture
density ρ is given by [Crighton et al. (1992)]:

ρ = βρg + (1− β)ρl (133)

where β is the volume fraction of gas in the mixture. Assuming a quasi-
steady behaviour, the pressure is uniform. Thus, we can add the compress-
ibility of the two phases to obtain the compressibility of the mixture:

1

ρc2
=

β

ρgc2g
+

(1− β)

ρlc2l
(134)

where cg is the speed of sound in gas and cl is the speed of sound in liquid.
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Eliminating the density by multiplying (133) by (134) yields:

c2 =
1

[βρg + (1− β)ρl]
[

β
ρgc2g

+ (1−β)
ρlc2l

] . (135)

For air/water mixtures at neither too small or too large a value of β we can
neglect both the contribution of air to the mass density and the contribution
of water to the compressibility. We then get:

c2 ≈ 1

[(1− β)ρl]
[

β
ρgc2g

] = c2g

(
ρg
ρl

)
1

β(1− β)
. (136)

For air with (ρg = 1.2kg/m, cg = 340m/s) and water with (ρl = 1000kg/m,
cl = 1500m/s) we get a minimal speed of sound cmin ≈ 20m/s at β = 0.5 .
The entropy term in the analogy of Lighthill for an isentropic flow can be
written as follows:

∂2

∂x2
i

(p′ − c20ρ
′) =

∂2

∂x2
i

p′
(
1− c20

c2

)
. (137)

The pressure fluctuations in the source region are of the same order as the
fluctuations in the Reynolds stress tensor: p′ ∼ ρU2. Hence, compared to a
free jet of water surrounded by water, the bubbly liquid turbulence sound
is enhanced by a factor |(1 − c20/c

2)| = 5 × 103, which is 74 dB. Infact,
taking a shower in a bath tub, we observe that the water jet impinging on
the water surface is much noisier than the jet immerged in the water, as we
can understand qualitatively in terms of the analogy of Lighthill. According
to Morfey (1973) and Powell (1990) this entropy term can be understood
as the sound produced by the unsteady force exerted on the mixture as
a result of the “buoyancy” force due to the difference in density between
the two phases undergoing a pressure gradient. This corresponds to a slip
between the two phases. Obviously, as there are no net external forces, this
sound source must be a quadrupole, the force of the gas on the liquid being
balanced by the reaction force of the liquid on the gas.

Similar effects, though much weaker can be found in non-isothermal gas
free jets. Contrary to earlier literature predicting a dipole [Morfey (1973),
Obermeier (1975)], recent studies indicate that the overall acoustic power
level radiated by hot jets is also in line with the height power law of Lighthill
[Viswanathan (2009)], which actually confirms that this sound source is also
a quadrupole. In the early literature it was also suggested that next to con-
vection effects due to density differences, the heat transfer between a hot
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gas free jet and its surroundings would generate a monpole sound source. In
cases with ideal gasses and a uniform constant Poisson ratio γ, this does not
occur due to the jet contraction by cooling compensating exactly expansion
of the surroundings due to heating [Morfey and Wright (2007)]. Monopole
sound sources do occur as a result of combustion or phase transition (mois-
ture condensation).

Bubble resonance can induce an even larger amplification of turbulent
sound production [Dowling and FfowcsWilliams (1983)]. Yet, it is argued by
Crighton (1975) that typical turbulent eddies corresponding to frequencies
close to resonance frequencies of bubbles are much smaller than the bubbles
and can therefore not excite the bubbles coherently. He therefore uses the
low frequency approximation described above.

6 Waves in pipes

6.1 Pipes modes

We are considering propagation of harmonic waves p′ = p̂ exp(iωt) in a
duct with a uniform rectangular cross section, with the duct axis is in the x3

direction. The duct is delimited by rigid walls in the planes: x1 = 0, x1 =
h1, x2 = 0, x2 = h2 (Figure 9). For such harmonic waves the wave equation

2x

3x

1x

1h

2h

2x

Figure 9. Duct with rectangular cross section.
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(47) can be written as:[
k20 +

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

]
p̂ = 0 . (138)

This is the Helmholtz equation.
Seeking a solution by using the method of separation of variables:

p̂ = F (x1)G(x2)H(x3) . (139)

and substituting (139) in (138) we get:

k20 +
1

F

d2F

dx2
1

+
1

G

d2G

dx2
2

+
1

H

d2H

dx2
3

= 0 . (140)

As this equation should be valid for any value of �x = (x1, x2, x3) each factor
in (140) should be constant:

1

F

d2F

dx2
1

= −α2 . (141)

1

G

d2G

dx2
2

= −β2 (142)

and
1

H

d2H

dx2
1

= − [
k20 − α2 − β2

]
. (143)

The constants α and β are determined by the boundary conditions of zero
normal velocity at the rigid walls. The normal component of the pressure
gradient, which is proportional to this normal velocity, vanishes at the walls:(

dF

dx1

)
x1=0

=

(
dF

dx1

)
x1=h1

= 0 (144)

and (
dG

dx2

)
x2=0

=

(
dG

dx2

)
x2=h2

= 0 (145)

From this we can conclude that the possible solutions for F and G have the
form:

Fm = cos(αmx1) ; αm =
mπ

h1
; m = 0, 1, 2, 3, ... (146)

and
Gn = cos(βnx2) ; βn =

nπ

h2
; n = 0, 1, 2, 3, ... (147)
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Substitution in equation (143) yields:

1

Hmn

d2Hmn

dx2
1

= − [
k20 − α2

m − β2
n

]
= −k2mn . (148)

There are two types of solution, depending on the sign of k2mn. For positive
values we have propagating wave modes:

p̂±mn = cos

(
mπ

h1
x1

)
cos

(
nπ

h2
x2

)
exp(∓i|kmn|x3) (149)

and for negative values we have evanescent modes:

p̂±mn = cos

(
mπ

h1
x1

)
cos

(
nπ

h2
x2

)
exp(∓|kmn|x3) (150)

with

|kmn| =
∣∣∣∣∣∣
√
k20 −

(
mπ

h1

)2

−
(
nπ

h2

)2
∣∣∣∣∣∣ (151)

The solution we are looking for is a linear superposition of these modes:

p′ =

( ∞∑
m=0

∞∑
n=0

(
A+

mnp̂
+
mn +A−

mnp̂
−
mn

))
exp(iωt) (152)

where the amplitudes of the modes are determined by the boundary con-
ditions at the boundaries of the duct in the x3 direction. For each mode
there is a cut off frequency (ωmn)c below which the mode is evanescent. For
example for the mode p̂10 we have:

(ω10)c =
πc0
h1

. (153)

The duct width should be larger than half the wave length to allow prop-
agation of this first higher-order mode. The mode p̂00 is the plane wave
mode and will always propagate.

Evanescent waves do not propagate energy. They decay exponentionally
with the distance along the duct. In the low frequency limit ω � (ωmn)c
the pressure perturbation due to an evanescent mode will decay faster than

exp
(
−mπ

h1
x1

)
. For mode (1,0) a distance h1 is sufficient for a decay by a

factor exp(π) ≈ 23. All other higher-order modes will decay even faster.


