Food Freezing and Thawing Calculations

von: Q. Tuan Pham

Springer-Verlag, 2014

ISBN: 9781493905577 , 153 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 53,49 EUR

Mehr zum Inhalt

Food Freezing and Thawing Calculations


 

Preface

5

Contents

7

Nomenclature

10

Chapter-1

15

Introduction to the Freezing Process

15

Chapter-2

19

Heat Transfer Coefficient and Physical Properties

19

2.1 Introduction

19

2.2 Heat Transfer Coefficient

19

2.3 Density

20

2.4 Calorimetric Properties

22

2.4.1 Freezing Point

22

2.4.2 Bound Water

24

2.4.3 Frozen Fraction

25

2.4.4 Enthalpy

27

2.4.5 Sensible Specific Heat

29

2.4.6 Apparent Specific Heat

30

2.4.7 Calorimetric Properties at High Pressure

31

2.4.7.1 Freezing Point at High Pressure

31

2.4.7.2 Enthalpy–Temperature Curve

32

2.5 Thermal Conductivity

32

2.6 Thermal Properties of Tylose Gel

36

2.7 Summary and Recommendations

37

CAUTION

38

Chapter-3

39

Analytical Solutions

39

3.1 The Heat Conduction Equation

39

3.2 Analytical Solutions for Freezing Time

40

3.2.1 Solution for Zero Internal Resistance

41

3.2.2 Solution for Zero Sensible Heat: Plank’s Equation

41

3.2.3 The Biot Number

43

3.2.4 Shape Factors for Zero Sensible Heat in Two and Three Dimensions

44

3.2.5 Exact Analytical Solutions for Freezing with Sensible Heat

46

3.2.6 Perturbation Solutions for Freezing with Sensible Heat

49

3.3 Summary and Recommendations

49

CAUTION

50

Chapter-4

51

Approximate and Empirical Methods

51

4.1 Introduction

51

4.2 Freezing Time of 1-D Shapes

51

4.2.1 Cleland & Earle’s Empirical Method

51

4.2.2 Mascheroni & Calvelo’s Approximate Method

52

4.2.3 Pham’s Method 1 (1984)

53

4.2.4 Pham’s Method 2 (1986)

54

4.2.5 Salvadori & Mascheroni’s Method

55

4.2.6 Improved Shape Factors for Basic Geometries

56

4.2.7 Comparison of Approximate and Empirical Freezing Time Prediction Methods in 1-D

57

4.2.8 Freezing Time Prediction for Extended Parameter Range

59

4.3 Freezing Time of Multidimensional Shapes

62

4.3.1 Equivalent Shape Approach

62

4.3.2 EHTD Shape Factor Approach

62

4.3.2.1 Infinite Rectangular Rods, Bricks, Finite Cylinders

62

4.3.2.2 Elliptical Cylinders (2-D)

63

4.3.2.3 Three-Dimensional Ellipsoids

64

4.3.2.4 Irregular Shapes

65

4.3.3 Mean Conducting Path (MCP) Approach

66

4.3.3.1 MCP for Rectangular Rods and Bricks

67

4.3.3.2 MCP for Ellipses and Ellipsoids

67

4.3.4 Arroyo & Mascheroni’s Method

68

4.3.5 Comparison of Shape Factor and Mean Conducting Path Approaches

68

4.4 Thawing Time Prediction

69

4.4.1 Cleland et al.’s method

70

4.4.2 Salvadori and Masheroni’s Method

70

4.4.3 Thawing Time Prediction for Multi-Dimensional Shapes

71

4.5 Freezing Heat Load

71

4.5.1 Total and Average Heat Load

71

4.5.2 Heat Load During the Phase Change-Subcooling Period

73

4.5.3 Dynamic Heat Load During the Precooling Period

75

4.5.3.1 Analytical Solutions

75

4.5.3.2 Lovatt et al.’s Method

75

4.5.3.3 Pham’s Method

76

4.5.4 Summary of Method

77

4.6 Summary and Recommendations

77

CAUTION

78

Chapter-5

79

Numerical Methods

79

5.1 Introduction

79

5.2 Discretization of the Space Domain

80

5.2.1 Finite Difference Method (FDM)

81

5.2.2 Finite Volume Method (FVM)

84

5.2.3 Finite Element Method (FEM)

85

5.2.4 Discretization of the Space Domain in 2-D and 3-D

89

5.3 Time-Stepping

90

5.3.1 Two-Level Stepping Schemes

90

5.3.2 Lee’s Three-Level Scheme

92

5.3.3 Use of Generic ODE Solvers

93

5.3.4 Time Stepping in Structured Grid FDM and FVM

93

5.4 Dealing with Changes in Physical Properties

95

5.4.1 Latent Heat of Freezing

95

5.4.1.1 Classification of Methods

95

5.4.1.2 Fictitious Heat Source Methods

96

5.4.1.3 Apparent Specific Heat Methods

97

5.4.1.4 Enthalpy Methods

98

5.4.1.5 Pham’s Temperature Correction Method (Quasi-enthalpy Method)

100

5.4.2 Variable Thermal Conductivity

102

5.4.3 Variable Density due to Thermal Expansion

104

5.5 Convergence and Accuracy of Numerical Methods

105

5.6 Summary and Recommendations

106

CAUTION

107

Chapter-6

108

Modelling Coupled Phenomena

108

6.1 Introduction

108

6.2 Combined Heat and Mass Transfer

108

6.2.1 Mass Transfer During the Freezing of Dense Foods

109

6.2.2 Mass Transfer During Air Freezing of Porous Foods

111

6.2.3 Mass Transfer During Immersion Freezing

117

6.2.4 Mass Transfer Between Intra- and Extracellular Spaces

117

6.3 Supercooling and Nucleation Effects

118

6.3.1 Instantaneous Nucleation Followed by Dendritic Crystal Growth

118

6.3.2 Gradual Nucleation in an Emulsion

119

6.3.3 Gradual Nucleation in Cellular Tissues

120

6.4 Microscale Modelling of Crystal Growth

123

6.4.1 Enthalpy Method

124

6.4.2 Cellular Automata

125

6.4.3 Front Tracking or Sharp Interface Methods

125

6.4.4 Level Set Method

125

6.4.5 Phase Field Method

126

6.5 High Pressure Freezing and Thawing

129

6.6 Freeze Concentration

131

6.6.1 General Principles

131

6.6.2 Suspension Freeze Concentration Model

133

6.6.3 Layer Freeze Concentration Models

133

6.7 Freezing of Liquid Foods

135

6.7.1 CFD Model of Liquid Food Freezing

135

6.7.2 Freezing of a Well-Stirred Liquid

137

6.8 Microwave and Radio Frequency Thawing

138

6.8.1 General Principles

138

6.8.1.1 Lambert’s Law

138

6.8.1.2 Maxwell’s Equations

139

6.8.2 Analytical Solutions

140

6.8.3 Numerical Solutions

140

6.9 Thermomechanical Effects During Freezing

141

Chapter-7

145

Conclusions

145

Erratum

148

References

149

Index

161